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Abstract. The model with the SU(2)L × SU(2)R × U(1)B−L gauge group, containing one bidoublet and
two triplets in the Higgs sector, is considered. The link between the constants determining the physical
Higgs boson interactions and the neutrino oscillation parameters is found. It is shown that the observation
of the ultrahigh-energy neutrinos with the help of the processes e−νe → W −Z, e−νe → µ−νµ, gives
us information on the singly charged Higgs bosons. The processes of the doubly charged Higgs bosons
production, e−µ− → ∆

(−−)
1 γ, e−µ− → ∆

(−−)
1 Z, are investigated. From the point of view of detecting the

neutral Higgs bosons the process of the electron–muon recharge e−µ+ → e+µ− is studied.

1 Introduction

For the unified gauge field theories such basic properties as
unitarity, renormalizability and endowing the fundamen-
tal particles with masses are strongly connected with the
existence of the Higgs bosons. The observation of one or
several Higgs bosons would establish the Higgs mechanism
as the physical basis of the symmetry breaking. However,
even for the standard model (SM) the Higgs boson sector
is a crucial part of the theory still escaping direct exper-
imental verification. Direct experiments searching for the
SM Higgs at the LEP II e+e− collider have placed a lower
limit of 89.3 GeV on its mass.

It is quite possible that the actual scalar sector in
nature has more than one doublet of Higgs bosons or
has Higgs bosons in other multiplets. This is expected
in many theories that go beyond the SM. One such ex-
tension of the SM is provided by supersymmetry and the
desire to tackle the hierarchy problem [1]. Another at-
tractive motivation for extending the Higgs sector is to
generate the small masses of the left-handed neutrinos
whose existence is hinted at by present solar and atmo-
spheric neutrinos data, as well as cosmological observa-
tions of the large scale structure and the possible ex-
plaining of the hot dark matter picture in the universe.
Amongst the extensions of the SM having a massive neu-
trino the left–right models (LRMs) based on the gauge
group SU(2)L × SU(2)R × U(1)B−L [2,3] are of special
interest because the LRMs also offer a dynamical solution
to the problem of parity violation of the weak interaction.
The symmetric LRMs, because of their invariance under a
discrete LR symmetry, imply that the gauge couplings gL
and gR of the SU(2)L and SU(2)R subgroups, respectively,
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are equal. These models are viable when considered in iso-
lation, but run into serious difficulties when they appear
as constituents of grand unified theories or when their
cosmological implications are treated. For example, the
symmetric LRMs exaggerate the value of sin2 θW, fail to
provide a natural explanation for the cosmological baryon
asymmetry, and may lead to problems associated with do-
main walls in cosmology. These contradictions can be re-
moved by assuming that the discrete LR symmetry is not
a good symmetry at low energies, i.e., it is violated at en-
ergies whose scale is much larger than the scale at which
the SU(2)L×SU(2)R×U(1)B−L symmetry is broken. As
a result, it turns out that gL 6= gR.

The purpose of the present work is to investigate the
Higgs sector of the asymmetric LRM. In the next section
we shall provide necessary insights into the scalar sector
build-up of the model under study and express the Higgs
bosons coupling constants through the masses and the
mixing angles of the neutrinos. In Sect. 3 we shall consider
the detection signatures of the singly charged Higgs bosons
in the ultrahigh-energy neutrinos experiments. There we
shall also study the production processes of the doubly
charged Higgs bosons and investigate the detection sig-
natures of the neutral Higgs bosons in the process of the
electron–muon recharge. The analysis of the results ob-
tained is presented in Sect. 4.

2 Description of the model

The subject of our study will be the asymmetric LRM
(gL 6= gR) [4] with the bidoublet
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and two triplets

∆L(1, 0, 2) =


 δ++

L
δ+
L

δ0
L


 , ∆R(0, 1, 2) =


 δ++

R
δ+
R

δ0
R




(in brackets the quantum numbers of the SU(2)L, SU(2)R
and the U(1)B−L groups are given). With this choice of
the Higgs sector the neutrino is a Majorana particle.

The spectrum of the physical Higgs bosons consists
of: four doubly charged scalars ∆

(±±)
1,2 , four singly charged

scalars h(±) and δ̃(±), four neutral scalars Si (i = 1, 2, 3, 4)
and two neutral pseudoscalars P1,2. The masses of these
bosons are functions of the vacuum expectation values
(VEVs) of the neutral components of the Higgs fields,

〈δ0
L,R〉 =

vL,R√
2

, 〈Φ0
1〉 = k1, 〈Φ0

2〉 = k2,

where vL << max(k1, k2) << vR, and of a large number
of self-coupling constants entering the scalar potential.

Let us choose the Higgs potential in the same form as
the authours of [5]. Its obvious expression is given in the
Appendix. We shall start with a definition of the inter-
action Lagrangians of the charged Higgs bosons. In the
sector of the singly charged scalar bosons we have four
physical Higgs bosons:

h(±) = bΦ
(±)
+ +

ak0

vR
δ±
R +

dβk2
0

(α + ρ1 − ρ3/2)v2
R

δ±
L , (1)

δ̃(±) =
aβk0

(α + ρ1 − ρ3/2)vR
δ±
R − dδ±

L , (2)

where

Φ
(±)
+ =

k1Φ
(±)
1 + k2Φ

(±)
2

k+
, Φ

(±)
− =

k1Φ
(±)
2 − k2Φ

(±)
1

k+
,

k± =
√

k2
1 ± k2

2, k0 =
k2

−√
2k+

, α =
α3k

2
+

2k2−
,

β =
k2
+(β1k1 + 2β3k2)

2k2−k0
,

a =
[
1 +

(
1 +

β2

(α + ρ1 − ρ3
2 )2

)
k2
0

v2
R

]−1/2

,

b =
(

1 +
k2
0

v2
R

)−1/2

, d =

[
1 +

β2k2
0(

α + ρ1 − ρ3
2

)2
v2
R

]−1/2

;

αi, ρi and βi are the constants entering the Higgs potential
(see (A.1)). The squared masses of these particles are given
by

m2
h = α(v2

R + k2
0) +

β2k2
0

α + ρ1 − ρ3/2
,

m2
δ̃

= (ρ3/2− ρ1)v2
R −

β2k2
0

α + ρ1 − ρ3/2
.

We also have four doubly charged physical Higgs bosons
∆

(±±)
1,2 , which are orthonormal mixtures of the δ

(±±)
L and

the δ
(±±)
R states:

∆
(±±)
1 = cθd

δ±±
L + sθd

δ±±
R ,

∆
(±±)
2 = −sθd

δ±±
L + cθd

δ±±
R ,

where cθd
= cos θd, sθd

= sin θd and

tan 2θd =
2k2

−[β3k
2
+ + β1k1k2)

k2
1(2ρ1 − ρ3 − 4ρ2)v2

R
.

Their masses are given by

m2
∆1

=
α3k

2
− + 4ρ2v

2
R

2
+

k4
−(β3k

2
+ + β1k1k2)2

2k4
1(4ρ2 + ρ3 − 2ρ1)v2

R
,

m2
∆2

=
α3k

2
− − (2ρ1 − ρ3)v2

R

2
− k4

−(β3k
2
+ + β1k1k2)2

2k4
1(4ρ2 + ρ3 − 2ρ1)v2

R
.

We shall take the Yukawa Lagrangian describing the gauge
invariant interaction in the lepton sector in the following
form:

LY = −
∑
a,b

{habΨaLΦΨbR + h′
abΨaLΦ̃ΨbR

+ifab[ΨT
aLCτ2(~τ · ~∆L)ΨbL + (L→ R)] + conj.}, (3)

where ΨaL (ΨaR) describes the left-handed (right-handed)
lepton doublet, τ1,2,3 are the Pauli matrices, C is the
charge conjugation matrix, Φ̃ = τ2Φ

∗τ2, a and b label
different generations, and hab, h

′
ab and fab = fba are the

bidoublet and the triplet coupling constants determining
the interactions between leptons and the Higgs bosons.

Using (1)–(3) we obtain the Lagrangian which describes
the interaction between leptons and the singly charged
Higgs bosons

Lsc
l

=
∑
a,b

{
b

[
h′

abk2 − habk1

2k+
νa(1− γ5)lb

−habk2 − h′
abk1

2k+
Na(1 + γ5)lb

]
h(+)

+
fab√

2
lca(1 + γ5)νb

[(
dβk2

0

(α + ρ1 − ρ3/2)v2
R

h(+) − dδ̃(+)
)

+lca(1− γ5)Nb

(
ak0

vR
h(+)

+
aβk0

(α + ρ1 − ρ3/2)vR
δ̃(+)

)]
+ conj.

}
, (4)

where the superscript c denotes the operation of the charge
conjugation.

With the help of the identity

νa(1− γ5)lb = (νc
a)c(1− γ5)(lcb)

c

= −(νc
a)T C−1(1− γ5)C(lcb)

T = lcb(1− γ5)νc
a,
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and the Majorana condition

νc
a = λ∗

νaνa,

where λνa is the creation phase factor of the field νa, the
first two terms in (4) can be rewritten in the form

∑
a,b

b

[
λ∗

νa

h′
abk2 − habk1

k+
lcb(1− γ5)νa

−λ∗
Na

habk2 − h′
abk1

k+
lcb(1 + γ5)Na

]
h(+).

At vL = 0 the interaction of the singly charged Higgs
bosons with the W1 and the Z1 bosons is determined only
by the Lagrangian

Lsc
V =

{
−gLgRcW cΦbk2

−√
2k+

h(+)

−gLgRg′sW (g′−1sW cΦ + g−1
R sΦ)

cW

×[ak0h
(+) +

aβk0

(α + ρ1 − ρ3
2 )

δ̃(+)]
}

WRµZ1µ

+conj., (5)

where cW = cos θW, sW = sin θW, cΦ = cos Φ, sΦ = sinΦ,
cξ = cos ξ, sξ = sin ξ, WRµ = −sξW1µ + cξW2µ, WLµ =
cξW1µ + sξW2µ, Φ and ξ are the mixing angles of the
neutral and the charged gauge bosons, respectively, and
g′ is the gauge coupling of the U(1)B−L subgroup. We
recall that the W1 – and the Z1 – gauge bosons are the
analogs of the gauge bosons of the SM. After taking into
consideration the contributions connected with vL in (5)
once more the term appears, namely

−egLsΦvL(g′g−1
R + gRg′−1)

cW

×
(

dβk2
0

(α + ρ1 − ρ3
2 )v2

R
h(+) − dδ̃(+)

)
WLµZ1µ. (6)

At quasi-degeneracy of the bidoublet vacuum expectation
values (QDBVEVs)

k1 = k − ∆k

2
, k2 = k +

∆k

2
,

∆k

k
� 1,

the minimization conditions

∂V

∂Φ0
1

=
∂V

∂Φ0
2

= 0 (7)

allow one to express the constants µ2
1,2 in the following

form:

µ2
1 =

1
2
{γ1 + 2γ2 − γ3 + (∆k)−1(k + 2∆k)γ4}, (8)

µ2
2 =

1
4
{γ1 + 2γ5 + γ3 − (∆k)−1kγ4}, (9)

where

γ1 = 2k2(λ1 + 2λ2 + λ3 + 2λ4),
γ2 = α1(v2

L + v2
R)/2 + β2vLvR,

γ3 = 2k2(−λ1 + 2λ2 + λ3),
γ4 = α3(v2

L + v2
R)/2 + (β3 − β2)vLvR,

γ5 = α2(v2
L + v2

R) + β1vLvR/2.

Recall that (8) and (9) are taken into consideration while
obtaining the obvious expression of the Higgs boson mass
matrix. In the case of the degeneracy of the bidoublet
vacuum expectation values (DBVEVs) (k1 = k2 = kg) we
should suggest that

γ4 = 0. (10)

Then for the squared mass of the h(±) boson the calcula-
tions produce the following result:

m2
h ≈ β1vLvR +

(ρ3

2
− ρ1

) v2
Lv2

R

k2 .

To estimate vL one can use the inequality

v2
L < ρt∆ρ0g

−1
L (k2

1 + k2
2), (11)

which follows from the analysis of the CDF and DO ex-
periments concerning the measurement of the parameter
ρ0 [6]:

ρ0 = 1 + ∆ρ0 =
m2

WL

c2
W m2

Z1
(1 + ρt)

,

where

ρt =
3GF m2

t

8
√

2π2
.

Putting ((ρ3/2)− ρ1) ≈ β1 ≈ 1, vR ≈ 1 TeV and using for
vL its upper bound, we obtain

mh ≤ 140 GeV.

Thus, even with the DBVEV the h(±) boson can be as
heavy as the singly charged Higgs boson in the minimal su-
persymmetric standard model H(±) for which as we know
the following equation is true:

mH > mW .

It is necessary to stress that the existence of restrictions
similar to (10) entirely depends on the Higgs potential
choice. Thus, for example, while making the change in
(A.1)

Φ∗ −→ Φ̃

only with the terms being proportional to α3, the condi-
tions (7) do not lead to any restrictions on the mass of the
h(±) boson and mh turns out to be proportional to vR.

Since the mixing angle in the sector of the charged
gauge bosons is defined as

tan 2ξ =
2k1k2

v2
R − v2

L
,



102 G.G. Boyarkina et al.: Higgs bosons in the left–right model

tan 2θ0 =
4k1k2k

2
−[2(2λ2 + λ3)k1k2 + λ4k

2
+]

k1k2[(4λ2 + 2λ3)(k4
− − 4k2

1k2
2) − k2

+(2λ1k2
+ + 8λ4k1k2)] − α2v2

Rk4
+

.

it has a maximum in the case of DBVEV. However, even
if vR is about 1 TeV, ξmax is of order 1.5× 10−2; this is in
accordance with the present experimental bounds.

If at the DBVEV (QDBVEV) in the quark sector one
uses the traditional expression for the Yukawa Lagrangian

LY = −
∑
a,b

(h(q)
ab QaLΦQbR +h

(q)′
ab QaLΦ̃QbR +conj.), (12)

where QaL (QaR) describes the left-handed (right-handed)
quark doublet, then one gets the relation

Mu =Md, (Mu ≈Md), (13)

whereMu,d are the diagonal mass matrices for the up and
down quarks. Then, to avoid (13) one can introduce the
additional Higgs triplets ∆′

L(1, 0, 2/3) and ∆′
R(0, 1, 2/3)

and one supplements the Lagrangian (12) with the term
[7]

−
∑
a,b

{f (q)
ab QT

aLCτ2(~τ · ~∆′
L)QbL + (L→ R) + conj}.

There is also another way – introduce the additional bi-
doublet Φu(1/2, 1/2, 0) which interacts with both the up
and the down quarks, but which contributes only to the
up quark mass [8]. However, in both approaches the un-
desirable increase in number of the physical Higgs bosons
takes place. In the asymmetric version of the LRM it is
not at all necessary to complicate the Higgs sector to ob-
tain Mu 6= Md. Thus, for example, instead of (12) one
can take the Lagrangian similar in its structure to the
corresponding Lagrangian of the SM

L(q)
Y = −

∑
a,b

{
h

(q)
ab QaLτ−Φτ+QbR

+h
(q)′
ab QaLτ+Φ∗τ−QbR + conj.

}
, (14)

where τ± = (1/2)(τ1 ± iτ2). At such a choice of L(q)
Y the

interaction between the singly charged Higgs bosons and
quarks does not take place. We note that the Lagrangians
(12) and (14) give the same values of the quark masses.

The Lagrangians describing the interactions of leptons
and Z1 bosons with the ∆

(±±)
1,2 scalars are given by the

expressions

Ldc
l = −

∑
a,b

fab

2
[lca(1 + γ5)lbcθd

− lca(1− γ5)lbsθd
]∆(++)

1

+(∆1 → ∆2, θd → θd − π

2
) + conj., (15)

Ldc
Z = [(αLc2

θd
+ αRs2

θd
)∆(−−)

1 ∂µ∆
(++)
1

+(α2
Lc2

θd
+ α2

Rs2
θd

)∆(−−)
1 ∆

(++)
1 Z1µ

+(∆1 → ∆2, θd → θd + π/2)

−sθd
cθd

(αL − αR)∆(−−)
1 ∂µ∆

(++)
2 (16)

−sθd
cθd

(α2
L − α2

R)∆(−−)
1 ∆

(++)
2 Z1µ + conj.]Z1µ,

where

g′ =
1√

c2
W e−2 − g−2

R

,

αL = e[2 cot 2θWcΦ − g′sΦc−1
W g−1

R ],

αR = e[−2c−1
W sW cΦ + sΦc−1

W g′−1g−1
R (g2

R − g′2)].

For the Higgs potential (A.1) the matrix of the transition
to the mass eigenstate basis for the neutral scalar Higgs
boson is too cumbersome. Since we are going to restrict
ourselves only to the investigation of reactions in which
the singly charged and the neutral Higgs bosons do not
appear simultaneously, we can simplify the expression for
the Higgs potential. Let us suppose that the following is
true:

α1 = −2α2k2

k1
, α3 = −2α2k

2
−

k1k2
, β1 = −2β3k2

k1
.

(17)
Then at vL = 0 we have four scalar,

S1 = Φ0r
− cθ0 + Φ0r

+ sθ0 , S2 = −Φ0r
−sθ0 + Φ0r

+ cθ0 ,

S3 = δ0r
R , S4 = δ0r

L , (18)

and two pseudoscalar,

P1 = Φ0i
+, P2 = δ0i

L , (19)

neutral physical Higgs bosons. In the formulae (18) and
(19) the superscript r (i) means the real (imaginary) part
of the corresponding quantity, cθ0 = cos θ0, sθ0 = sin θ0,
and (see formula on top of the page)

The squared masses of these bosons are defined by

m2
S1

= 2λ1k
2
+ + 8k2

1k
2
2(2λ2 + λ3)/k2

+ + 8λ4k1k2

+
4k1k2k

4
−[2(2λ2 + λ3)k1k2/k2

+ + λ4]2

α2v2
Rk2

+
, (20)

m2
S2

= −α2v
2
Rk2

+

k1k2

−4k1k2k
4
−[2(2λ2 + λ3)k1k2/k2

+ + λ4]2

α2v2
Rk2

+
, (21)

m2
S3

= 2ρ1v
2
R, mS4 = (ρ3/2− ρ1)v2

R, (22)

m2
P1

= 2k2
+(λ3 − 2λ2)−

α2v
2
Rk2

+

k1k2
,

m2
P2

= (ρ3/2− ρ1)v2
R. (23)
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It should be stressed that (20)–(23) still hold at both the
DBVEV and the QDBVEV.

The Lagrangians which determine the interaction of
the physical neutral Higgs bosons with leptons and gauge
bosons are given by the expression

Ln
l

= − 1√
2k+

∑
a

malaRlaL(S1cθ0 − S2sθ0)

− 1√
2k+

∑
a,b

laRlbL[(habk1 − h′
abk2)(S1sθ0 + S2cθ0)

+i(habk1 + h′
abk2)P1]

− 1√
2k+

∑
a,b

{NaRνbL[hab(k1cθ0 − k2sθ0)

+h′
ab(k2cθ0 + k1sθ0)]S1

−[hab(k1sθ0 + k2cθ0) + h′
ab(k2sθ0 − k1cθ0)]S2

−i(habk2 + h′
abk1)P1}

− 1√
2

∑
a,b

fab[νc
aLνbL(S4 + iP2) + N

c

aRNbRS3]

+conj., (24)
2Ln

W

= k+[W ∗
1µW1µ(g2

Lc2
ξ + g2

Rs2
ξ) + W ∗

2µW2µ(g2
Ls2

ξ + g2
Rc2

ξ)

+
1
2
s2ξ(g2

L − g2
R)(W ∗

1µW2µ + W ∗
2µW1µ)](S1cθ0 − S2sθ0)

−gLgR

k+
{[c2ξ(W ∗

2µW1µ + W ∗
1µW2µ)

+s2ξ(W ∗
2µW2µ −W ∗

1µW1µ)][(2k1k2cθ0 + k2
−sθ0)S1

−(2k1k2sθ0 − k2
−cθ0)S2]

−igLgRk+(W ∗
2µW1µ −W ∗

1µW2µ)P1

+g2
LvL[W ∗

1µW1µc2
ξ + W ∗

2µW2µs2
ξ

+
1
2
s2ξ(W ∗

1µW2µ + W ∗
2µW1µ)]S4 + g2

RvR[W ∗
1µW1µs2

ξ

+W ∗
2µW2µc2

ξ −
1
2
s2ξ(W ∗

1µW2µ + W ∗
2µW1µ)]S3, (25)

It is known that the interactions in the sector of the neu-
tral gauge bosons are defined by the angle ϕR which is
connected with the orientation of the SU(2)R generator
in the group space. Below we choose ϕR to be equal to
zero. We recall that in this case our model will coincide
with that proposed by Mohapatra [3]. The reader can find
all the Lagrangians describing the interactions of the neu-
tral gauge bosons with the fermions and charged gauge
bosons in [4].

The constraints on the Yukawa couplings (YCs) could
be obtained by investigation of the neutrino oscillations.
Nowadays, there exist three indications in favor of the neu-
trino oscillation scheme. The first indication comes from
the observations of the solar neutrinos in various experi-
ments [9] and their disagreement with the predictions of
the standard solar model. The solar neutrino data may
be explicable in terms of νe → νX oscillations (X = µ, τ)

with either a small mixing angle MSW solution [10]

sin2 2θeX ≈ (0.4–1.3)× 10−2,

or a large mixing angle MSW solution

sin2 2θeX ≈ (0.5–0.9),

or vacuum oscillations

sin2 2θeX ≥ 0.67.

The second indication in favor of neutrino mixing comes
from the observations of the atmospheric neutrinos by sev-
eral previous experiments [11] and the most recent con-
firmation of the earlier results by the Super-Kamiokande
Collaboration [12]. The atmospheric neutrino data are ex-
plicable by νµ → ντ oscillations with

sin2 2θµτ ≥ 0.8.

A description in terms of νµ → νe oscillations alone fits
the data less well, and is in any case largely excluded by
the CHOOZ experiment [13]. However, there may be some
admixture of νµ → νe oscillations [14] as well.

The third indication was obtained in the Los Alamos
liquid scintillation neutrino detector (LSND) experiment
which gave the first laboratory evidence for the oscillation
of both νµ → νe as well as νµ → νe [15]. The interpreta-
tion of the LSND data favors the choice

0.002 ≤ sin2 2θeµ ≤ 0.03.

The experiment KARMEN 2 [16] (the second accelerator
experiment at medium energies) is also sensitive to this
region of parameter space and restricts the allowed values
to a relatively small subset of the above region.

Most likely the final determination of the oscillation
channels could be done in future high statistics short-
and long-baseline oscillation experiments in which neu-
trino beams are produced at high-energy accelerators, and
oscillations could be detected at distant undergroud de-
tectors. Such experiments include the KEK–Kamiokan-
de K2K Collaboration [17], the Fermilab–Saudan MINOS
Collaboration [18], and the CERN–Gran Sasso ICARUS,
Super-ICARUS, AQUA-RICH, NICE, NOE and OPERA
Collaborations [19]. Experiments using a muon storage
ring [20] should be especially important due their ability
to measure both νe → νµ, and/or ντ , and νµ → νe and/or
ντ , as well as the corresponding oscillation channels for
antineutrinos.

We shall represent the relations connecting the neu-
trino oscillation parameters and the YCs in two-flavor ap-
proximation. The neutrino mass matrix in the basis

ΨT =
(
νT

eL, NT
eR, νT

XL, NT
XR

)
has the form

M =




feevL me
D feXvL MD

me
D feevR M ′

D feXvR

feXvL M ′
D fXXvL mX

D

MD feXvR mX
D fXXvR


 ,
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where ml
D = hllk1 + h′

llk2, MD = heXk1 + h′
eXk2, M ′

D =
hXek1 + h′

Xek2, l = e, X. Recall that the constants hll

and h′
ll define the charged leptons masses according to

the relation
ml = hllk2 + h′

llk1.

Let us assume a mixing scheme in which the transition
to the eigenstate neutrino mass basis mi (i = 1, 2, 3, 4) is
carried out by the matrix [21]

U =




cϕe
cθν

sϕe
cθN

cϕe
sθν

sϕe
sθN

−sϕe
cθν

cϕe
cθN

−sϕe
sθν

cϕe
sθN

−cϕX
sθν −sϕX

sθN
cϕX

cθν sϕX
cθN

sϕX
sθν

−cϕX
sθN
−sϕX

cθν
cϕX

cθN


 ,

where ϕl is the mixing angle inside the lth generation,
θν(θN ) is the mixing angle between the light (heavy) neu-
trinos belonging to the e and X generations, cϕe = cos ϕe,
sϕe = sinϕe, and so on.

Using the eigenvalue equation for the mass matrix we
obtain the relations which define the YCs through the
masses and mixing angles of the neutrino,

me
D = cϕe

sϕe

×(−m1c
2
θν
−m3s

2
θν

+ m2c
2
θN

+ m4s
2
θN

),(26)
MD = cϕe

sϕX
cθν

sθν
(m1 −m3)

+sϕe
cϕX

cθN
sθN

(m4 −m2), (27)
feXvR = sϕe

sϕX
cθν

sθν
(m3 −m1)

+cϕe
cϕX

cθN
sθN

(m4 −m2), (28)

feevR = (sϕe
cθν

)2m1 + (cϕe
cθN

)2m2

+(sϕe
sθν )2m3 + (cϕesθN

)2m4, (29)

fXXvR = (sϕX
sθν )2m1 + (cϕX

sθN
)2m2

+(sϕX
cθν

)2m3 + (cϕX
cθN

)2m4, (30)

mX
D = me

D

(
ϕe → ϕX , θν,N → θν,N +

π

2

)
,

M ′
D = MD(ϕe ↔ ϕX).

The change L → R in the left-hand sides of (28)–(30)
results in the change ϕe,X → ϕe,X + π/2 in their right-
hand sides.

It should be stressed that in the LRM even if the mix-
ing angle between the light neutrinos belonging to the e
and X generations θν is equal to zero, the non-diagonal
YCs could be not equal to zero.

Let us show that assuming the “sea-saw” relation to
be obeyed,

mνl
mNl

= m2
l ,

we can have both small and large mixing angles between
the light and the heavy neutrinos ϕl. This could easily be
done in a one-flavor approximation. Thus, demanding

ml
D = ml, vL → 0, (31)

we have the expression

tan 2ϕl ≈ 2
(

mνl

mNl

)1/2

. (32)

On the other hand, having suggested that

(ml
D)2 − f2

llvRvL = m2
l , (33)

to define the angle ϕl we obtain the formula

tan 2ϕl ≈ 2

((
ml

fllvR

)2

+
vL

vR

)1/2

. (34)

If one assumes the mass of the W2 boson to be equal to
800 GeV, as we are doing hereafter, then with the help of
the inequality

mNe < 63 GeV
(

1.6 TeV
mW2

)4

,

resulting from the experiments aimed at finding the neu-
trino-less double β decay, for the heavy electron neutrino
mass we obtain a value of order 1 TeV. It is reasonable to
assume that mNX

has the same order of magnitude. To
find vR one can use the relation

vR =

√
4(m2

W2
−m2

W1
)

g2
L(2 + tan2 2ξ)

,

following from the definition of the W1,2 bosons masses.
In our case we obtain vR equal to 1.7 TeV.

Equation (32) will always lead to small values of the
angles ϕl. However, (34) can produce not only small an-
gles ϕl, but also large ones. Actually, let ∆ρ0 be equal
to 10−4, then vL can reach the values of order 1.7 GeV,
and we find ϕl to be of order 3 × 10−2. Another possi-
ble version with vL = 0 always generates small values of
ϕl. Therefore, we should distinguish two possibilities: (i)
the mixing angles inside the neutrino generation are small
(10−5–10−6), which occurs at both vL = 0 and vL 6= 0;
(ii) at non-zero values of vL, the values of the angles ϕl

can be as large as a few ×10−2.
The best laboratory limits on the left-handed neutrino

masses can be summarized as follows [6]:

mνe
≤ 5 eV, mνµ

≤ 170 keV, mντ
≤ 18.2 MeV.

These are most independent of the model as they follow
purely from the kinematics. The mass of the electron neu-
trino (more precisely the electron antineutrino) has been
investigated using the β− decay of tritium:

3
1H→ 3

2He + e− + νe.

The limits for the mass of the νµ comes from the study of
the decay

π+ → µ+ + νµ,

with the pion at rest. The bound on the ντ mass follows
from the investigation of the decays

τ− → KKντ , 5πντ , 6πντ .

To make an estimate of the YCs below, we shall use for the
left-handed neutrino masses and the interfamily mixing
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angle θν their upper experimental bounds (θν ≤ 0.03) and
assume

θν = θN , mNe
= 1 TeV, mNX

= 1.5 TeV.

To suppress the oscillations between the charged leptons
it is necessary that the bidoublet non-diagonal constants
heX and h′

eX satisfy the relation

k2heX + k1h
′
eX = 0.

Then, taking into consideration the definitions of mW1 and
MD, we can express h′

eX , h′
Xe, heX and hXe as a function

of k1:

h′
eX = Ω, heX = −Ωk1

k2
,

h′
Xe(hXe) = h′

eX(heX){MD −→M ′
D}, (35)

where

Ω =

√
(1+ρt∆ρ0−4k2

1/v2
R)[2g−2

L m2
W1

−k2
1(1+ρt∆ρ0)]MD

2g−2
L m2

W1
−2k2

1(1+ρt∆ρ0)+4k4
1/v2

R

,

and the values of k1 are within the range from 0 to 2g−2
L m2

W1

/(1 + ρt∆ρ0). In (35) we have changed vL by the upper
bound which follows from (11).

From the expression for the Yukawa Lagrangian (3)
follows that in the lepton sector the LRM will generate
both the flavor changing neutral currents (FCNCs) and
the flavor changing charged currents (FCCCs) at the tree
level. The Higgs doublet of the SM does not generate a
tree level FCNC because the mass matrix is directly pro-
portional to the Yukawa coupling matrix, so diagonaliza-
tion of the former automatically diagonalizes the latter.
However, in the LRM, the mass matrix is the sum of the
four Yukawa coupling matrices (each times the appropri-
ate VEV), and since the Yukawa coupling matrices are
generally not simultaneously diagonalizable, diagonaliza-
tion of the mass matrix will not, as a rule, diagonalize the
Yukawa coupling matrices, leading both to the FCNC and
to the FCCC at the tree level. The LRM structure allows
one to obtain sizable values of the bidoublet non-diagonal
constants not only at large values of ϕe and ϕX , but at
both MD = 0 (DBVEV) and MD ≈ 0 (QDBVEV). Thus,
for example, at the DBVEV these constants become arbi-
trary because the equality of their sum to zero is the only
demand they must satisfy. On the other hand, investigat-
ing the cases of the large mixing angles, the DBVEV and
the QDBVEV we must consider only such values of the
lepton non-diagonal couplings heX , h′

eX and the physical
Higgs bosons masses which do not conflict with the ex-
perimentally obtained bounds both on the FCNC and on
the FCCC. Up to now there are several experimental tests
of lepton number violating interactions mediated by the
virtual doubly charged Higgs bosons of the LRM (see [22]
and references therein) which lead to constraints on the
triplet YCs and the doubly charged Higgs bosons masses.
Let us investigate two lepton number violating processes
which could give us information about the bidoublet YCs

and the mass values both of the neutral and of the singly
charged Higgs bosons. First, we consider the decay

µ− → e−νeνµ. (36)

For the case of the right polarized µ− we get

Γµ−→e−νeνµ
=

d4(feefµµ)2

96(2π)3m4
δ̃

m5
µ. (37)

Using the current data [6]

Γµ−→e−νeνµ

Γµ−→all
< 1.2× 10−2,

we are lead to the following bounds on the FCCC param-
eters:

d2feefµµ < 0.746× 10−3
( mδ̃

GeV

)2
. (38)

Having done the analogous calculations for the decay of
the left polarized muon, we obtain

b2αeeαµµ < 0.373× 10−3
( mh

GeV

)2
, (39)

where

αab =
h′

abk2 − habk1

k+
.

The most stringent constraint could be found from the
upper limit for the lepton flavor changing decay

µ− → e+e−e−. (40)

The detailed calculations of its width can be done taking
into account the Feynman diagrams with the ∆

(−−)
1 -, S1-

and S2- exchanges, which yield

Γµ−→e+e−e− =
τm5

µ

96(2π)3
, (41)

where

τ =
(

feefeµ

m2
∆1

)2

+
1

8k2
+

[
α2

eµ

(
mecθ0sθ0 − αeek+s2

θ0

m2
S1

−mesθ0cθ0 + αeek+c2
θ0

m2
S2

)2

+
(heek1 + h′

eek2)2(heµk1 + h′
eµk2)2

k2
+m4

P1

]

+
2mefeefeµ

mµm2
∆1

k+

{
αeµ

[(
mecθ0sθ0 − αeek+s2

θ0

m2
S1

−mesθ0cθ0 + αeek+c2
θ0

m2
S2

)]

− (heek1 + h′
eek2)(heµk1 + h′

eµk2)
k+m2

P1

}
,
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and for the sake of simplicity we set θd = 0. Experimental
constraints [6] thus imply that the LRM parameters must
satisfy √

τ < 2.32× 10−11 GeV−2. (42)

Now we could estimate the values of the lepton bidoublet
YCs at the DBVEV. Since in this case θ0 = 0, and heµ =
−h′

eµ, the contributions connected with the S1 and P1
Higgs bosons have disappeared. Having assumed that feµ

is equal to zero and mS2 is of the order of 1 TeV, we obtain

heµhee < 3.25× 10−5. (43)

The bounds on the neutral Higgs bosons masses may be
found from the investigation of the K

0 ↔ K0 transitions
as well. We recall that for the model under study the two
kind of Yukawa Lagrangians L(q)

Y describing the gauge
invariant interaction in the quark sector could be used.
Thus, we have

Ln
q = − 1√

2k+

∑
a,b

ua

{[
mua

(cθ0 −
2k1k2

k2−
sθ0)S1

−mua
(sθ0 +

2k1k2

k2−
cθ0)S2 − imda

γ5P1

]
δab

+
k2
+

k2−
(KMdK∗)ab (S1sθ0 + S2cθ0)

}
ub

+(ua → da, mua
↔ mda

, γ5 → −γ5), (44)

for the case when L(q)
Y is given by (12), and

Ln
q = − 1√

2k+

∑
a

ua

{
mua

[(
cθ0 +

k1

k2
sθ0

)
S1

−
(

sθ0 −
k1

k2
cθ0

)
S2

]
+

imua
k1

k2
γ5P1

}
ua

+(ua → da, θ0 → −θ0), (45)

when (14) is used for the definition of L(q)
Y . From (44) and

(45) follows that for our choice of the Yukawa potential
(see (17)) only the Lagrangian (44) contains the flavor
violating couplings which could generate large K

0 ↔ K0

transitions in contradiction to experiment. Therefore, the
bounds on the masses of the Higgs bosons giving rise to
the FCNC in the quark sector could be obtained for the
case when L(q)

Y is determined exclusively by (12). Due to
the tiny angle θ0 (θ0 < k2

+/v2
R), the main contribution to

the K
0
–K0 mixing comes from the diagram with the S2

exchange. It can be shown that in this case the bound on
the S2 boson mass will be given by

mS2 ≥ 10 TeV. (46)

3 Higgs phenomenology

At present the most powerful neutrino accelerators are the
cosmic accelerators in the outer space. Some are known

sources of ultrahigh-energy (UHE) cosmic ray neutrinos.
One of them exploits neutrinos produced when UHE pro-
tons inelastically scatter off the cosmic microwave back-
ground radiation (CBR) in processes such as γp → nπ+

where the produced pion subsequently decays. The CBR
neutrino energy can be as large as 1 EeV. Other sources of
UHE neutrinos are the active galactic nuclei (AGN). Typ-
ical AGN luminosities are in the range 1044 to 1047 erg/s.

From this tremendous power output one infers that the
source powering AGN is gravity, i.e. matter accretion into
a supermassive (M ≥ 106M�) black hole (such objects are
known to exist in the centers of nearby galaxies observed
with the Hubble space telescope). Within AGN, protons
accelerated to a very high energy interact with matter or
ambient radiation and produce pions whose decay prod-
ucts include photons and neutrinos. The maximum energy
of AGN neutrinos is of the order of 1 PeV. There are a lot
of papers where the diffuse fluxes both of the CBR and
the AGN neutrinos have been estimated (see [23], and ref-
erences therein). Let us discuss two processes with UHE
cosmic neutrinos which could be studied with the help of
such neutrino telescopes as DUMAND, BAIKAL NT-200,
NESTOR and AMANDA.

The first one is

e−νe →W−
1 Z1, (47)

In Fig. 1 the Feynman diagrams corresponding to the pro-
cess (47) in the second order of perturbation theory are
shown. For reasons of convenience we shall investigate this
process for the left and the right polarized target electrons
separately. First, we focus our attention on the former
case. Let us assume that we deal with a right polarized
neutrino beam. Then this process is described by the di-
agrams pictured in Figs. 1a,b,c. Since we have been ne-
glecting the neutrino mass, the cross section will have the
same form as that of the reaction

e−νe →W−
1 Z1 (48)

when the neutrino is of a Dirac nature. For the SM the
reaction (48) was considered in [24] while for the version
of the LRM suggested by Mohapatra and Sidhu [25] it was
investigated in [26]. Since for the right polarized neutrino
beam there are no diagrams with virtual Higgs bosons
and there are no resonance peaks we shall not discuss this
case. We only note that the total cross section is of order
8–10 pb.

In the case of the left polarized neutrino beam the
contributions to the cross section of the reaction (47) come
from the diagrams shown in Figs. 1c,d. The total cross
section is given by the expression

σLL

=
g2
LβWZ

128πs


g2

A1c
2
ξ

4∑
i,j=1

(ΛLL
ee )imi(ΛLL

ee )jmjM1(mi, mj)

+
feesW

cW [(s−m2
δ̃
)2 + Γ 2

δ̃
m2

δ̃
]
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e−

νe

W −
1

W −
1

Z1

a)

e−

νe

e−

Z1

W −
1

b)

e− W −
1

νi

νe Z−
1

c)

e−

νe

δ̃(−)

W −
1

Z1

d)

e−

νe

h(−)

W −
1

Z1

e)

Fig. 1. The Feynman diagrams giving the contributions to the
reaction e−νe → W −

1 Z1

×
(

gRsW cΦsξdaβk0

α + ρ1 − ρ3/2
+
(

g′

gR
+

gR

g′

)
gLsΦcξd

2vL

)

×
(

gA1cξ

∑
i

(ΛLL
ee )imi(s−m2

δ̃
)M2(mi)

+
feesW

cW

(
gRsW cΦsξdaβk0

α + ρ1 − ρ3/2

+
(

g′

gR
+

gR

g′

)
gLsΦcξd

2vL

)
M3

))
, (49)

where

βWZ =

√(
1− m2

W1
+ m2

Z1

s

)2

−
(

2mW1mZ1

s

)2

,

M1(mi, mj) =
8(Li − Lj)
sδm2

ijβWZ

[
s +

s(m4
i + m4

j )
8m2

W1
m2

Z1

+
(m2

W1
+ m2

Z1
)Cij

2m2
W1

m2
Z1

]

+
Li + Lj

sm2
W1

m2
Z1

βWZ

×[2(m2
W1

+ m2
Z1

)(m2
W1

+ m2
Z1

−s−m2
i −m2

j ) + s(m2
i + m2

j )]

+
2(s− 2m2

W1
− 2m2

Z1
)

m2
W1

m2
Z1

,

M2(mi) =
32Li

βWZ

[
1 +

(m2
W1

+ m2
Z1
− s)m2

i

4m2
W1

m2
Z1

]

+
8s(m2

W1
+ m2

Z1
− s)

m2
W1

m2
Z1

,

M3 = 64s +
8s(m2

W1
+ m2

Z1
− s)2

m2
W1

m2
Z1

,

Cij =
1
2
[(m2

W1
+ m2

Z1
− s)(m2

i + m2
j )

−m4
i −m4

j ]−m2
W1

m2
Z1

,

Li = ln
∣∣∣∣m2

W1
+ m2

Z1
− s− 2m2

i + sβWZ

m2
W1

+ m2
Z1
− s− 2m2

i − sβWZ

∣∣∣∣ ,
L = Li|mi=0, δm2

ij = m2
i −m2

j ,

gA1 =
e

2cW

(
cΦ

cW
+

sΦ√
c2
W g2

Re−2 − 1

)
,

∑
i

(ΛLL
ee )imi = feevL

and the expression for the total decay width of the δ̃(−)

boson by the assumption

mδ̃ < mW2 + mZ1 , mZ2 + mW1

is given in the Appendix. In Fig. 2 we present σLL as
a function of the energy in the center of mass system
of the leptons s1/2 for different values of k1 and mδ̃ at
cY = (daβ)/(α + ρ1 − ρ3/2) = 2 and fττ = 0.9 in the
case of the small angles ϕl. The value of fee correspond-
ing to our choice of parameters is 0.58. As follows from
Fig. 2 the cross section increases moving away k1 from
kg ' 122.9537 GeV. The analysis also shows that it does
not practically depend on the values of both vL and ϕl.

Note that Γδ̃(−)→W −
1 Z1

is of order of a few ×10−2 MeV
and grows very slowly with the increase of mδ̃.

So, the value of fττ is getting very important when
the δ̃(−) decay channels with such heavy particles as W2,
Z2, Ne, Nµ etc. are closed. Actually, let us consider the
case of the DBVEV. Then, the total cross section in the
non-resonance region is very small. Notwithstanding this
fact, the δ̃(−) resonance could be detected. For example,
at cY = 3, fee = 0.2, vL = 1.7 GeV and mδ̃ = 200 GeV,
the resonance peak height (σLL)δ̃ is 3.6, 24, 15×103 fb for
fττ equal to 0.8, 0.5, 0.1, respectively. Special attention
must be given to the Higgs potential parameters α + ρ1−
ρ3/2 since they have potent effects on (σLL)δ̃. There are
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Fig. 2. The total cross section of the reaction e−
LνeL → W −

1 Z1

as a function of
√

s at Φ = 9.6 × 10−3, ξ = 10−2, gR = 1.4gL,
cY = 2, ϕe = 10−6, ϕµ = 2.5× 10−4 and vL = 1.7× 10−7 GeV.
The solid (dotted) line corresponds to the case mδ̃ = 180 GeV
and k1 = 10 GeV (k1 = 40 GeV). The dashed line goes to the
case mδ̃ = 250 GeV and k1 = 10 GeV

no reasons that would forbid this combination to be very
small. Recall that the sole constraint on the parameters
follows from arguments relating to vacuum stability which
demand [5]

ρ1 − ρ3/2 < 0.

Then, assuming α + ρ1 − ρ3/2 = 10−2 and setting the
remaining parameters to values which are the same as in
the case of Fig. 2 (solid line), we get

(σLL)δ̃ = 3.6× 103 pb.

Now we go on to the case when the target electrons are
right polarized. The cross section does not equal zero for
the right polarized neutrino only. The contributions to it
come from the diagrams shown in Figs. 1c,e. It is pertinent
to note that in the two Higgs doublet model we also have
these diagrams.

The total cross section is defined by the expression

σRR =
βWZ

256πs

{
[megLcξ(ge

V 1 − ge
A1)]

2M1(me, me)

+
κ

[(s−m2
h)2 + Γ 2

h(−)m
2
h]

(50)

×
[
megLcξ(ge

V 1 − ge
A1)(s−m2

h)
2

M2(me) +
κ

4
M3

]}
,

where

ge
V 1 =

ecΦ

cW sW

(
2s2

W −
1
2

)

+
esΦ

cW

√
c2
W g2

Re−2 − 1

(
3
2
− c2

W g2
R

2e2

)
,

ge
A1 =

esΦ

√
c2
W g2

Re−2 − 1
2cW

− ecΦ

2sW cW
,

κ =
gLgRcΦsξk

2
−αee

cW k+
.

Using the definitions of ml and ml
D one could find

αll =
2k1k2ml − k2

+ml
D

k2−k+
. (51)

Unlike the δ̃(±) boson, the h(±) boson could interact with
the quarks. When in the quark sector one uses the Yukawa
Lagrangian in the form (14), then its interaction with the
quarks is absent and there is no restriction on its mass
based on a measurement of the inclusive b → sγ cross
section. In this case the only restriction will follow from
the LEP experiments excluding at 95% CL any charged
Higgs with a mass lower than 44.1 GeV [27]. If we use the
Yukawa Lagrangian (14) and assume that mh is less than
mW2 , mZ2 and mNl

, the total width of the h(−) Higgs
boson is given by

Γh(−) =
∑

l

Γh(−)→lνlR
+ Γh(−)→W1Z1

;

the partial widths are determined in the Appendix. How-
ever, for the Yukawa Lagrangian defined by (12) the par-
tial quark widths Γh(−)→cs and Γh(−)→tb, where

Γh(−)→cs =
3k2

+

16πmh cos2 2β

(
1− (mc + ms)2

m2
h

)
× ((m2

c + m2
s)(1 + sin2 2β)− 4mcms sin 2β

)
×w(m2

h, m2
c , m

2
s),

Γh(−)→tb = Γh(−)→cs (mc → mt, ms → mb) ,

tanβ =
k1

k2

should be taken into account as well.
The analysis shows that the sole chance for the obser-

vation of σRR is to operate in the h(−) resonance region.
However, the resonance peak height (σRR)h mainly de-
pends on whether the interaction between the h(±) Higgs
boson and quarks takes place or not. Let us assume that
we work with the Yukawa Lagrangian defined by (14).
Then the situation is as follows.

In the case of the DBVEV (QDBVEV) and in the case
of large values of the angle ϕe we always can detect the res-
onance peak connected with the h(−) boson. For example,
when mh = 300 GeV, ϕe = 2 × 10−2 and k1 = 140 GeV,
(σRR)h is of order 3.5×103 pb. When the angle ϕe is very
small then our possibilities for detecting the h(−) reso-
nance peak crucially depend on the values k1 ((σRR)h in-
creases or decreases when k1 approaches to or moves off
kg). For example, at mh = 250 GeV and ϕe = 10−5 we
have (σRR)h = 2 × 10−4, 6 × 10−2, 1.6, 14 pb for k1 equal
to 10, 70, 100, 110 GeV, respectively.
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e− µ−

W −
1

νe νµ

a)

e− µ−

h(−)

νe νµ

b)

e−

µ−

h(−)

νe

νµ

c)

e− µ−

δ̃(−)

νe νµ

d)

e−

µ−

δ̃(−)

νe

νµ

e)

Fig. 3. The Feynman diagrams corresponding to the process
e−νe → µ−νµ

If the gauge invariant interaction between quarks and
Higgs bosons are described by (12) then we have no chance
to observe the h(−) resonance at mh > mt. At mh < mt

(σRR)h reaches its maximum (∼ few × 10 fb) for large
values of ϕe (∼ 10−2) and values of k1 which are well
away from kg.

Now we consider one more process with the UHE neu-
trinos, namely

e−νe → µ−νµ. (52)

The corresponding Feynman diagrams are shown in Fig. 3.
The total cross sections are given by

σL =
1

32πs2

×
(

(1− λν)

(
g4
Lc4

ξs
3

3[(s−m2
W1

)2 + Γ 2
W1

m2
W1

]

+
2g2

Lc2
ξf

2
eµ(s−m2

W1
)

[(s−m2
W1

)2 + Γ 2
W1

m2
W1

]

×
(

s2

2
−m2

δ̃
s +

m2
δ̃
Γ 2

δ̃(−) −m4
δ̃

2
Nδ̃ + 2m3

δ̃
Γδ̃(−)Qδ̃

)

0.1

1

10

100

1000

10000

50 100 150 200 250 300 350 400 450 500

σLL, pb.

√
s, GeV

Fig. 4. The σLL as a function of
√

s when λν = 1, fττ = 0.5,
fµµ = 7.5 × 10−2, fee = 5.5 × 10−2 and k1 = 90 Gev for the
cases a mδ̃ = 200 GeV (solid line); b mδ̃ = 70 GeV (dotted
line)

+(feµ)2
(

4(feµ)2 − 2g2
Lc2

ξΓW1Γδ̃(−)mW1mδ̃

(s−m2
W1

)2 + Γ 2
W1

m2
W1

)

×
(

s + m2
δ̃
Nδ̃ +

m3
δ̃
−mδ̃Γ

2
δ̃(−)

Γδ̃(−)

Qδ̃

))

+
(1 + λν)4f2

eef
2
µµs3

(s−m2
δ̃
)2 + Γ 2

δ̃(−)m
2
δ̃

)
(53)

for the case of left polarized electrons, and

σR =
1

128πs2

(
(1− λν)(αeeαµµ)2s3

(s−m2
h)2 + Γ 2

h(−)m
2
h

(54)

+(1 + λν)α4
eµ

(
s + m2

hNh +
m3

h −mhΓ 2
h(−)

Γh(−)
Qh

))

for the case of right polarized electrons, where

Nk = ln
∣∣∣∣ m4

k + Γ 2m2
k

(s + m2
k)2 + Γ 2

k m2
k

∣∣∣∣ ,
Qk = arctan

(
s + m2

k

Γkmk

)
− arctan

(
mk

Γk

)
,

and k = δ̃, h. In (53) and (54) the quantity λν denotes
the neutrino helicity. For the left polarized electrons and
the right polarized neutrinos the deviations from the SM
predictions are very small. For example, at feµ = 3×10−2

they are of the order of 0.1%. Recall that in this case
there is the W1 resonance peak (Glashow resonance) and
its height (σW ) reaches values of the order of 104 pb.

From the definitions of mW1 and MD we could obtain

αeµ =
Ωk+

k2
. (55)
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σ
e−µ−→∆

(−−)
1 Z1

=
f2

eµβ3
∆1Zs2

4πm2
Z1

(
α2

Lc4
θd

P+ + α2
Rs4

θd
P−

(s − m2
∆1

)2 + Γ 2
∆1

m2
∆1

+
2cθdsθd(α2

Rs2
θd

P− − α2
Lc2

θd
P+)[(s − m2

∆1)(s − m2
∆2) + Γ∆1Γ∆2m∆1m∆2 ]

[(s − m2
∆1

)2 + Γ 2
∆1

m2
∆1

][(s − m2
∆2

)2 + Γ 2
∆2

m2
∆2

]
+

c2
θd

s2
θd

(α2
LP+ + α2

RP−)
(s − m2

∆2
)2 + Γ 2

∆2
m2

∆2

)
, (59)

Fig. 5. The σRR versus
√

s at λν = −1 for the cases a mh =
90 GeV – solid line; b mh = 175 GeV – dotted line; c mh =
200 GeV – dashed line. In all three cases we adopt ϕe = 8 ×
10−3, ϕµ = 9 × 10−3, fττ = 0.5 and k1 = 115 GeV

When MD is non-zero, then even for large values of ϕe

and ϕµ the quantity αeµ is very small. For example, at
ϕe = 2.5×10−2, ϕµ = 3×10−2 and k1 = 70 GeV, we have
αeµ = 1.8 × 10−5. Since for the definition of αll we have
(51), the same is true for the case l = e, while the quantity
αµµ could be as large as 10−2 even at small angles ϕµ. In
the DBVEV case we have

αab = 2h′
ab.

However, even at abnormally large values of αeµ, say 2×
10−2, the cross section for the right polarized electrons
and the left polarized electron neutrinos can reach only
values of order 3× 10−3 fb. Therefore, of primary interest
are the cases with the initial e−

L νeL and e−
RνeR. In Fig. 4

we represent the total cross section for the former case.
For small mixing angles ϕl, the value of σR, at λν =

−1, (σRR) is very small. Figure 5 shows the behavior of
σRR(s1/2) for the case of large mixing angles.

It is well to bear in mind that the following possibility
could occur. The cross section of the singly charged Higgs
boson resonances (σe−νe→µ−νµ

)δ̃,h turns out to be larger
than σW . For example, when fττ = 0.6, fµµ = 0.75, fee =
0.09 and mδ̃ = 70 GeV, we have (σe−νe→µ−νµ

)δ̃ ∼ 105 pb.
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e− ∆
(−−)
1

∆
(−−)
1

µ− γ

e− ∆
(−−)
1

∆
(−−)
1,2

µ− Z

Fig. 6. The Feynman diagrams corresponding to the processes
e−µ− → ∆

(−−)
1 γ, e−µ− → ∆

(−−)
1 Z1

At high energy the best way of measuring the non-
diagonal YCs is to investigate the lepton flavor (LF) chang-
ing processes which has s channel resonance amplification
or else is described by Feynman diagrams with only one
vertex containing the YC. The processes

e−µ− → ∆
(−−)
i γ (i = 1, 2) (56)

e−µ− → ∆
(−−)
i Z1, (57)

provide excellent examples. These could be studied at the
muon colliders (MCs) under construction [28,29] which
work both with a fixed electron target and with an electron
beam. When i = 1, the Feynman diagrams corresponding
to the processes (56) and (57) are displayed in Fig. 6.

Below we assume that the initial particles are unpo-
larized and we neglect the lepton masses. Then for the
total cross sections we obtain the expressions (equation
(59) stands on top of the page)

σ
e−µ−→∆

(−−)
1 γ

=
2e2f2

eµ(c2
θd

P+ + s2
θd

P−)(s2 −m4
∆1

)
πs[(s−m2

∆1
)2 + Γ 2

∆1
m2

∆1
]

, (58)

where P± = (1± λe)(1± λµ), and λl denotes the helicity
of the initial leptons.

The quantity σ
e−µ−→∆

(−−)
1 γ

is maximum at the thresh-

old (s1/2)th. However, there are two factors constraining
our possibilities when we investigate the behavior of the
reaction (56) near (s1/2)th.

(i) By virtue of the fact that the ∆
(−−)
1 boson is an un-

stable particle (s1/2)th is smeared within the region of
energy being of order ∆E1 = Γ∆1→all.

(ii) Taking into account the radiation corrections and the
contributions coming from the soft photon bremsstrah-
lung leads not only to the cancellation of the infrared
divergence, but to a dependence of the cross section
on the photon resolution of the detector (∆Eγ) which
is used in the experiments.
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Fig. 7. The total cross section of the reaction e−µ− → ∆
(−−)
1 γ

versus
√

s at λe = 0.8, λµ = 0.9 and ∆Eγ = 1 GeV. The
solid (dotted) line corresponds to the case m∆1 = 200 (m∆1 =
300) GeV and feµ = 3 × 10−3 (feµ = 10−4)

The total decay width of the ∆1 boson is much smaller
than ∆Eγ . At fττ = 0.9 and m∆1 = 400 GeV it is a mere
0.25 MeV, while, for example, the photon energy thresh-
old of the electromagnetic calorimeter of the OPAL detec-
tor is about 1 GeV. In Fig. 7 we display the behavior of
σ

e−µ−→∆
(−−)
1 γ

in the energy region from (s1/2)th + ∆Eγ

to 500 GeV.
Since the reaction (56) has practically no background,

it is evident that its investigation is one of the most precise
methods to measure the value of feµm−2

∆1
.

Investigating the reaction (57) at s1/2 = m∆j (j 6= i)
we obtain information about the masses and the mixing
angle of the ∆

(−−)
1 and ∆

(−−)
2 bosons. We recall that the

MC is an ideal tool for such research because of the fol-
lowing reasons. First of all, besides the storage ring of the
MC one has a special-purpose ring which allows to op-
timize the collider luminosity near the Higgs resonance
under study. Second, the root mean square deviation of
the beam energy from the Gaussian distribution could
sharpen to 0.01%, which in its turn allows one to reach
the necessary condition to measure even the small decay
widths of the doubly charged Higgs bosons Γ∆i→all (the
beam energy resolution must be of the same order as the
quantity Γ∆i→all).

For the sake of definiteness we assume that m∆1 <

m∆2 . From the absence of the ∆
(−−)
2 resonance peak in the

cross section we must conclude that one of the following
conditions is fulfilled:

m∆1 + mZ1 > m∆2 , θd is arbitrary, (60)

m∆1 + mZ1 ≤ m∆2 θd ≈ 0. (61)

In Fig. 8 we show σ
e−µ−→∆

(−−)
1 Z1

versus s1/2 for the more
optimistic case when m∆1 + mZ1 < m∆2 and θd 6= 0.

0.1

1
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100

1000

200 250 300 350 400 450 500

σ, fb.

√
s, GeV

Fig. 8. The total cross section of the reaction e−µ− →
∆

(−−)
1 Z1 versus

√
s at λe = 0.8, λµ = 0.9, θd = 10−4 and

feµ = 3 × 10−3. The solid (dotted) line corresponds to the
case m∆1 = 200 GeV, m∆2 = 300 GeV (m∆1 = 100 GeV,
m∆2 = 200 GeV)

From now on we shall consider the process of the elec-
tron–muon recharge,

e−µ+ −→ e+µ−, (62)

which practically has no background. One can start to in-
vestigate this process right now, since the energy of the
muon beams used in the current experiments is rather
high. Thus, for example, since 1994 the Spin Muon Col-
laboration at CERN has been working with muon beams
of which the energy reaches 190 GeV and the polarization
∼ 0.8 [30]; in the FNAL experiments investigating the
muon–proton interaction muons with energies of 470 GeV
[31] have been used. The process (62) could be also stud-
ied at the MCs. In the second order of perturbation the-
ory its diagrams are given in Fig. 9. We recall, that in
the two Higgs doublet model, provided the YCs have LF
non-diagonal elements (see, for example, [32]), the process
of the electron–muon recharge is also described by dia-
grams with neutral Higgs boson exchanges. On the other
hand, in the case of the SM this process takes place only
in the fourth order of perturbation theory (provided the
neutrino is massive) and there are no diagrams with a
physical Higgs boson in the virtual states.

For the sake of simplicity we set

heµ = hµe, (63)

and set θd to zero. Note that from (63) follows

ϕe = ϕµ.

We shall also assume that the Yukawa Lagrangian for the
quarks is defined by (14).
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e− e+

S1,2, P1

µ+ µ−

e−

e+

S1,2

P1

µ+

µ−
e−

e+

∆
(−−)
1,2

µ+
e−

Fig. 9. The Feynman diagrams corresponding to the process
of the electron-muon recharge

The differential cross section of the reaction (62) for
the initial polarized particles is defined by

dσ

d(cos θ)
=

1
32πs

{
(1 + λe)(1 + λµ)

4(fµµfee)2t2

[(t−m2
∆1

)2 + Γ 2
∆1

m2
∆1

+(1→ 2, λe → −λe, λµ → λµ)

+s2(1− λeλµ)

×
[∣∣∣∣∣ (heµk1 − h′

eµk2)2s2
θ0

k2
+(s−m2

S1
+ iΓS1mS1)

+
(heµk1 − h′

eµk2)2c2
θ0

k2
+(s−m2

S2
+ iΓS2mS2)

∣∣∣∣∣
2

+
(heµk1 + h′

eµk2)4

k4
+[(s−m2

P1
)2 + Γ 2

P1
m2

P1
]

]

+(s→ u, λe = λµ = 0)

+su(1− λeλµ)
∑

k,l=P1,S1,2

Fkl

+2u2λeλµ

∑
i=1,2

GP1Si

}
, (64)

where

Fkl =
akl[(u−m2

k)(s−m2
l ) + mkΓkmlΓl]

[(u−m2
k)2 + m2

kΓ 2
k ][(s−m2

l )2 + m2
l Γ

2
l ]

,

GP1Si
=

aP1Si [(u−m2
Si

)(u−m2
P1

) + mSiΓSimP1ΓP1 ]
[(u−m2

Si
)2 + m2

Si
Γ 2

Si
][(u−m2

P1
)2 + m2

P1
Γ 2

P1
]
,

aS1S1 =
(heµk1 − h′

eµk2)4s4
θ0

k4
+

,

Fig. 10. The differential cross section of the process e−µ+ →
e+µ− versus

√
s at θ = π/2, ϕe = ϕµ = 10−4, fee = 0.15,

and fµµ = 0.3. The solid line corresponds to λe = λµ = 0,
m∆1 = 150 GeV, m∆2 = 200 GeV, the dotted line does to
m∆1 = 150 GeV, m∆2 = 200 GeV, λe = 0.7, and λµ = −0.8,
the dashed line does to m∆1 = 250 GeV, m∆2 = 300 GeV,
λe = 0.7, and λµ = −0.8

aS2S2 = aS1S1 (θ0 → θ0 + π/2) ,

aP1P1 =
(heµk1 + h′

eµk2)4

k4
+

,

aP1S2 = aS2P1 = − (heµk1 − h′
eµk2)2(heµk1 + h′

eµk2)2c2
θ0

k4
+

,

aP1S1 = aS1P1 = aS2P1 (θ0 → θ0 + π/2) ,

aS1S2 = aS2S1

=
(heµk1 − h′

eµk2)2(heµk1 + h′
eµk2)2c2

θ0
s2

θ0

k4
+

;

θ is the angle between ~pe and ~pµ in the center of mass
system, and the expressions for the decay widths of the
∆

(−−)
1,2 , S1,2 and P1 bosons are given in the Appendix.

As the analysis shows, the cross section of the reaction
(62) also depends on k1. It increases while k1 is approach-
ing kg and decreases while moving away from kg both to
the region of smaller values as well as larger ones.

Let us choose the following values for the LRM param-
eters entering the cross section of the process (62)

mS2 = 900 GeV, gR = 1.4gL, mP1 = 5 TeV,

mNe
= 750 GeV, mNµ

= 1.8 TeV.

In Fig. 10 we present the differential cross section of the
reaction (62) for small mixing angles ϕl and a large triplet
YCs fll. In this case we have no chance to detect the
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Fig. 11. The differential cross section of the process e−µ+ →
e+µ− versus

√
s at θ = π/2. The solid line corresponds to

ϕe = 10−2, ϕµ = 2 × 10−2, mS1 = 85 GeV, and k1 = 115 GeV.
The dashed line corresponds to the case of the DBVEV at
heµ = 3 × 10−2. For the both curves the following values of
the parameters. m∆1 = 150 GeV , m∆2 = 200 GeV , λe = 0.7,
λµ = −0.8, mS1 = 90 GeV have been used

resonance peaks connected with the Higgs boson S1,2 and
P1. As follows from Fig. 10 the cross section decreases
with increasing doubly charged Higgs bosons masses.

In the case of large mixing angles ϕl (ϕµ = 2× 10−2)
the partial cross sections associated with the neutral Higgs
bosons exchanges are very small. For example, when k1 =
118 GeV and θ = π/2, the height of the S1 resonance
peak is equal to 0.3 and 0.17 fb for mS1 = 65 and 90 GeV,
respectively.

In Fig. 11 we display dσ/d(cos θ) versus s1/2 both for
large mixing angles and for the DBVEV (in the case of the
DBVEV the S1 and P1 Higgs bosons do not take part in
the process (62) at all). Under these conditions just one S2
resonance could be observed. At increasing fee and fµµ the
contributions coming from the diagrams with the ∆

(−−)
1,2

exchanges are growing, which in turn might lead to the
absence of the S2 resonance splash in the cross section even
in the DBVEV case with the large values of the bidoublet
YCs heµ and h′

eµ. Thus, for example at fee = 0.42, fµµ =
0.65, m∆1 = 150, m∆2 = 200 GeV and heµ = 3× 10−2 in
the unpolarized cross section the S2 resonance peak is no
longer observed. It should be stressed that the registration
of the S2 resonance peak in the reaction (62) will also
ascertain the existence of the νe ←→ νµ oscillations.

4 Conclusions

In this paper we have studied the Higgs sector of the asym-
metric LRM. We have chosen the LRM as an example not
by accident but due to the reason that its Higgs sector
contains the elements belonging to other nowaday most
popular models. Thus, for example, the presence of the bi-

doublet in the LRM causes the existence of the same phys-
ical Higgs bosons in the minimal supersymmetric standard
model and in the two Higgs doublet modification of the
SM.

We have considered two reactions,

e−νe →W−
1 Z1, e−νe → µ−νµ.

For the former within the SM any resonances are absent
while the LRM predicts the existence of the δ̃(−) and h(−)

resonances, whose heights could reach values of the order
of a few ×103 pb. For the latter, at s1/2 = mW , there is
the so-called Glashow resonance predicted both by the SM
and the LRM. However, the LRM total cross section also
has two resonance peaks related to the δ̃(−) and h(−) Higgs
bosons. At the corresponding values of the YCs and the
Higgs potential parameters the height of these peaks could
exceed that of the Glashow resonance. The UHE cosmic
neutrino could be used for studying these two reactions at
such neutrino telescopes as DUMAND, BAIKAL NT-200,
NESTOR and AMANDA. Then the observation of heavy
muon showers connected with the resonance splashes in
the cross sections will definitely ascertain both the exis-
tence of the singly charged Higgs bosons and the character
of their interaction with quarks and leptons.

We have shown that the process

e−µ− → ∆
(−−)
1 γ

is the ideal tool for measuring the quantity feµm−2
∆1

. It
should be stressed that up to now we have only bounds
on the combination feµfeem

−2
∆1

.
It was found that with the help of the process

e−µ− → ∆
(−−)
1 Z1,

utilizing the exchange of the ∆
(−−)
2 boson in the s chan-

nel, we could obtain bounds on both the masses and the
mixing angle of the ∆

(−−)
1 and ∆

(−−)
2 bosons. Note that

the ∆
(−−)
2 resonance peak height crucially depends on the

value of the above mentioned angle, which in its turn is
extremely sensitive to the choice of both the VEV and the
Higgs potential parameters.

We have considered the reaction of the electron–muon
recharge

e−µ+ → e+µ−,

which gives information about such YCs as fµµ, fee, heµ

and h′
eµ. It was shown that under the DBVEV when the

bidoublet YCs could be large, there is a good chance to
detect the neutral Higgs boson S2 by a resonance splash
in the cross section.

We have also obtained the relationships linking the
YCs with the masses and the mixing angles of the neutri-
nos. Using the YCs values found in the accelerator experi-
ment with the Higgs bosons we get information about the
neutrino sector parameters. Therefore, the program aim-
ing at looking for the physical Higgs bosons at the lepton
colliders will also provide the answer to the question of
the masses and the oscillation angles of the neutrinos. In
this sense the lepton colliders shall turn out to be comple-
mentary to neutrino telescopes.
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Appendix

In [5] it was shown that the most general form of the Higgs
potential of the LRM is

V = −µ2
1[Sp(Φ†Φ)]− µ2

2[Sp(Φ̃Φ†) + Sp(Φ̃†Φ)]

−µ2
3[Sp(∆L∆†

L) + Sp(∆R∆†
R)] + λ1[Sp(ΦΦ†)]2

+λ2{[Sp(Φ̃Φ†)]2 + [Sp(Φ̃†Φ)]2}
+λ3[Sp(Φ̃Φ†)Sp(Φ̃†Φ)]

+λ4{Sp(ΦΦ†)[Sp(Φ̃Φ†) + Sp(Φ̃†Φ)]}
+ρ1{[Sp(∆L∆†

L)]2 + [Sp(∆R∆†
R)]2}

+ρ2[Sp(∆L∆L)Sp(∆†
L∆†

L) + Sp(∆R∆R)Sp(∆†
R∆†

R)]

+ρ3[Sp(∆L∆†
L)Sp(∆R∆†

R)]

+ρ4[Sp(∆L∆L)Sp(∆†
R∆†

R) + Sp(∆†
L∆†

L)Sp(∆R∆R)]

+α1{Sp(ΦΦ†)[Sp(∆L∆†
L) + Sp(∆R∆†

R)]}
+α2[Sp(ΦΦ̃†)Sp(∆R∆†

R) + Sp(Φ†Φ̃)Sp(∆L∆†
L)]

+α∗
2[Sp(Φ†Φ̃)Sp(∆R∆†

R) + Sp(Φ̃†Φ)Sp(∆L∆†
L)]

+α3[Sp(ΦΦ†∆L∆†
L) + Sp(Φ†Φ∆R∆†

R)]

+β1[Sp(Φ∆RΦ†∆†
L) + Sp(Φ†∆LΦ∆†

R)]

+β2[Sp(Φ̃∆RΦ†∆†
L) + Sp(Φ̃†∆LΦ∆†

R)]

+β3[Sp(Φ∆RΦ̃†∆†
L) + Sp(Φ†∆LΦ̃∆†

R)]. (A.1)

Below we provide the expressions defining the total
decays widths of the physical Higgs bosons. For the neutral
scalar Higgs bosons they have the form

ΓSi
= ΓSi→fermions +

∑
nl

ΓSi→WnWl
,

where

ΓS1→leptons =
1

16πmS1

{∑
a

(
macθ0

k+

)2

G(S1, la, la)

+
∑
a,b

(habk1 − h′
abk2)2s2

θ0

k2
+

G(S1, la, lb)

+
∑
a,b

[hab(k1cθ0 − k2sθ0) + h′
ab(k1sθ0 + k2cθ0)]

2

k2
+

×G(S1, νa, Nb)
}

, (A.2)

G(Si, fj , fk) =
(

1− (mj + mk)2

m2
Si

)
w(m2

Si
, m2

j , m
2
k),

w(a, b, c) = [a2 + b2 + c2 − 2(ab + ac + bc)]1/2

ΓS1→quarks =
1

16πmS1

×
{∑

a

[mua
(cθ0k2 + sθ0k1)]2

(k2k+)2
G(S1, ua, ua)

+
∑

a

[mda
(cθ0k1 − sθ0k2)]2

(k1k+)2
G(S1, da, da)

}
,

ΓS2→fermions = ΓS1→fermions(θ0 → θ0 + π/2, mS1 → mS2),

ΓSi→WnWl
=

(cnl
i )2

16πm3
Si

(
2 +

(m2
Si
−m2

Wn
−m2

Wl
)2

4m2
Wn

m2
Wl

)

×w(m2
Si

, m2
Wn

, m2
Wl

),

2cnl
1 =




k+cθ0(g
2
Lc2

ξ + g2
Rs2

ξ)
+gLgRs2ξ(2k1k2cθ0 + k2

−sθ0)/k+, n = l = 1
k+cθ0(g

2
Ls2

ξ + g2
Rc2

ξ)
−gLgRs2ξ(2k1k2cθ0 + k2

−sθ0)/k+, n = l = 2
k+cθ0(g

2
L − g2

R)s2ξ/2
−gLgRc2ξ(2k1k2cθ0 + k2

−sθ0)/k+, n = 1, l = 2

cnl
2 = cnl

1 (θ0 → θ0 + π/2).

For the neutral pseudoscalar Higgs bosons these widths
are given by

ΓP1 = ΓP1→fermions + 2ΓP1→W+
1 W −

2
,

where

ΓP1→leptons =
1

16πmP1

{∑
a,b

(habk1 + h′
abk2)2

k2
+

G′(P1, la, lb)

+
(habk2 + h′

abk1)2

k2
+

G′(P1, νa, Nb)
}

,

ΓP1→quarks =
1

16πmP1

∑
a

{(
muak1

k2k+

)2

G′(P1, ua, ua)

+
(

mdak2

k1k+

)2

G′(P1, da, da)

}
,

G′(Si, fj , fk) = G(Si, fj , fk)(mj → −mj),

ΓP1→W+
1 W −

2
=

(gLgRk+)2

32πm3
P1

(
2 +

(s−m2
W1
−m2

W2
)2

4m2
W1

m2
W2

)
×w(m2

P1
, m2

W1
, m2

W2
).

Finally, the decay widths both of the singly charged and
the doubly charged Higgs bosons are determined by

Γδ̃ =
∑

l

(Γδ̃→lcνl
+ Γδ̃→lcNl

) + Γδ̃→W1Z1
, (A.3)

where

Γδ̃→lcνl
=

f2
lld

2(m2
δ̃
−m2

l −m2
νl

)

8πm3
δ̃

w(m2
δ̃
, m2

l , m
2
νl

),

Γδ̃→lcNl
=

f2
lla

2β2k2
0(m

2
δ̃
−m2

l −m2
Nl

)

8πm3
δ̃
(α− ρ1 − ρ3/2)2v2

R
w(m2

δ̃
, m2

l , m
2
Nl

),

Γδ̃→W1Z1
=

(gRgLs2
W cΦsξaβk0)2

16πc2
W m3

δ̃
(α + ρ1 − ρ3/2)2

×
(

(m2
δ̃
−m2

W1
−m2

Z1
)2

4m2
W1

m2
Z1

+ 2

)

×w(m2
δ̃
, m2

W1
, m2

Z1
).
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Γh→lνl
= Γδ̃→lcνl

×
(√

2flld→ b(h′
llk2 − hllk1)

k+
, mδ̃ → mh

)
,

Γh→lN l
= Γδ̃→lcNl

×
(

ak0

vR
→ b(hllk2 − h′

llk1)
k+

, mδ̃ → mh

)
,

Γh→W1Z1 = Γδ̃→W1Z1

(
gRgLs2

W cΦsξaβk0

cW (α + ρ1 − ρ3/2)

→ gRgLcΦsξbk
2
−√

2k+cW

, mδ̃ → mh

)
,

Γ∆1,2 '
f2

ττm2
τ

8πm∆1,2

√
1− 4m2

τ

m2
∆1,2

.
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